skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Franklin, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pooling and sharing data increases and distributes its value. But since data cannot be revoked once shared, scenarios that require controlled release of data for regulatory, privacy, and legal reasons default to not sharing. Because selectively controlling what data to release is difficult, the few data-sharing consortia that exist are often built around data-sharing agreements resulting from long and tedious one-off negotiations. We introduce Data Station, a data escrow designed to enable the formation of data-sharing consortia. Data owners share data with the escrow knowing it will not be released without their consent. Data users delegate their computation to the escrow. The data escrow relies on delegated computation to execute queries without releasing the data first. Data Station leverages hardware enclaves to generate trust among participants, and exploits the centralization of data and computation to generate an audit log. We evaluate Data Station on machine learning and data-sharing applications while running on an untrusted intermediary. In addition to important qualitative advantages, we show that Data Station: i) outperforms federated learning baselines in accuracy and runtime for the machine learning application; ii) is orders of magnitude faster than alternative secure data-sharing frameworks; and iii) introduces small overhead on the critical path. 
    more » « less
  2. null (Ed.)
  3. Here, we present the draft genome sequence for the violacein-producing Janthinobacterium sp. CG23_2 isolated from an Antarctic supraglacial stream. The genome is ~7.85 Mb, with a G+C content of 63.5%. The genome includes 7,247 candidate protein coding genes, which may provide insight into UV tolerance mechanisms. 
    more » « less
  4. null (Ed.)
    Every few years a group of database researchers meets to discuss the state of database research, its impact on practice, and important new directions. This report summarizes the discussion and conclusions of the eighth such meeting, held October 14- 15, 2013 in Irvine, California. It observes that Big Data has now become a defining challenge of our time, and that the database research community is uniquely positioned to address it, with enormous opportunities to make transformative impact. To do so, the report recommends significantly more attention to five research areas: scalable big/fast data infrastructures; coping with diversity in the data management landscape; end-to-end processing and understanding of data; cloud services; and managing the diverse roles of people in the data life cycle. 
    more » « less